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ABSTRACT

Classification of satellite images is a crucial task for remote sensing applications including land cover
mapping, urban planning, and environmental monitoring. This work introduces a robust deep learning
architecture for classifying high-resolution satellite images into four classes: cultivated area, forest area,
desert region, and water bodies. The method uses both a native Convolutional Neural Network (CNN)
and transfer fine-tuned MobileNetV2 model learning. Models were tested with accuracy, precision,
recall and Fl-score. The results demonstrate that MobileNetV2 achieved a test accuracy of 99.14%,
which outperformed the custom CNN, which had attained 93.12%, thus confirming the efficacy of
transfer learning in satellite image classification.

KEYWORD: Satellite Image Classification, Convolutional Neural Network (CNN), MobileNetV2, Transfer
Learning, Remote Sensing, Deep Learning, Land Cover Classification, Image Recognition, Accuracy
Assessment, Performance Measures.

1. Introduction

Remote sensing has witnessed significant growth in the past decade, driven by significant technological
advancements in satellite imagery and image processing algorithms. Conventional ways to classify
Satellite images typically use traditional hand-crafted feature extraction techniques and heuristic laws,
which are slow and insensitive to subtle spatial patterns. Contrarily, deep learning-based the techniques,
particularly the convolutional neural network (CNN)-based techniques, have seen visibility due to their
ability to automatically record complicated spatial relationships within large-scale satellite data sets. The
present study examines the efficiency of deep learning approaches by comparing a typical CNN
architecture with the use of a transfer learning strategy with MobileNetV2 with a focus on cultivated
land, green area, desert, and water to determine how they fare in actual world conditions.

Convolutional Neural Networks (CNN) has demonstrated remarkable performance in picture
classification tasks, mostly due to its capacity for hierarchical feature learning [26][28]. CNNs can
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identify local patterns like edges, textures, and forms in early levels by processing raw pixel input
through a series of convolutional layers. Deeper layers then synthesize these features into more abstract
representations for precise class separation. In satellite images, where spatial context such as urban
layouts, vegetation distribution, and water bodies is crucial to categorization accuracy, this hierarchical
structure is very helpful. CNNs automatically train discriminative features, which makes them ideal for
high-dimensional remote sensing data, in contrast to conventional techniques that call for manually
created features.

This work uses MobileNetV2, a lightweight deep learning model built for resource-constrained contexts,
to further improve speed and efficiency. MobileNetV2 significantly reduces processing overhead while
maintaining competitive accuracy with the use of depthwise separable convolutions and inverted
residual blocks. The model uses pretrained ImageNet weights within a transfer learning framework to
effectively adapt to satellite imagery. This approach not only minimizes overfitting, a common issue with
short datasets, but it also accelerates convergence, making it a feasible substitute for classifying urban
satellite images in situations where data availability may be limited.

This work compares a custom CNN with MobileNetV2-based transfer learning to investigate the trade-
offs between model complexity, computational efficiency, and classification accuracy in the context of
urban satellite data. Based on their unique constraints be they computational resources, dataset size, or
required precision the findings are intended to help academics and practitioners choose the best deep
learning approaches. In the end, our work supports the larger endeavor to optimize automated satellite
image processing for applications related to environmental monitoring, urban planning, and disaster
management.

2. Related Work

Deep learning has revolutionized satellite image classification by making it possible to automatically
extract high-level spatial and semantic characteristics. This contrasts with conventional machine learning
methods that depend on feature engineering by hand. Initial work by Tumpa and Islam [1] showed how
lightweight CNN architectures in conjunction with SVM classifiers could increase classification accuracy
for satellite data. By combining predictions from several machine learning models, ensemble
approaches like the confidence-based model fusion put out by K et al. [2] have improved resilience.
These developments highlight the move toward data-driven methods that can manage the complexity
and unpredictability present in data from remote sensing.

A major advancement in effective deep learning for remote sensing was made possible by MobileNetV2
[3], a low-power architecture that reduces computation without sacrificing efficiency by using depthwise
separable convolutions and inverted residual blocks. The approach has proven very useful in situations
requiring few resources, such as the processing of satellite images. Transfer learning, which adapts
models pretrained on large datasets like ImageNet for remote sensing applications, has further
improved efficiency. Studies by Hu et al. [4] and Marmanis et al. [5] demonstrated that fine-tuning
pretrained CNNs significantly enhances high-resolution remote sensing scene classification, even with
minimal labeled data.
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Deep learning approaches have been very beneficial for urban land use classification, with
researchers investigating different architectures and fusion methodologies. Transfer learning and deep
CNNs were used by Xu et al. [8] to extract buildings from extremely high-resolution images. However,
Audebert et al. [9] used multimodal deep networks to combine RGB and multispectral inputs, improving
classification accuracy. The AID dataset [14] and other benchmark datasets have been essential in
standardizing assessments for aerial scene classification. Deep learning has improved object-level
classification in addition to scene-level analysis. In order to demonstrate how deep learning may be
applied to remote sensing applications, Li et al. [10] created models for the detection and counting of oil
palm trees, and Zhang et al. [16] presented a CNN-based technique for autonomous road extraction.

In order to further improve classification performance, recent research has emphasized the
need of merging multimodal data with sophisticated learning approaches. In order to take advantage of
both spatial and temporal information, Roy et al. [22] and Qi and Zhang [15] combined CNNs with LSTMs
and transfer learning. In the meantime, Cheng et al. [12],[27] improved scene classification accuracy by
using metric learning to improve discriminative feature representations. Traditional deep learning
models like ResNet [18], VGGNet [19], and AlexNet [20] remain fundamental, influencing more effective
designs like MobileNetV2 and specific remote sensing adaptations. Comprehensive assessments by Zhu
et al. [7], Liu et al. [23], and Zhang et al. [24] show the ground-breaking impacts of deep learning in Earth
observation, encompassing tasks from land cover categorization to object recognition. Additionally,
Zhao and Du [25] established deep spectral-spatial feature extraction approaches for hyperspectral
data, enabling finer-grained classification.

This work conducts a direct comparison between a custom CNN and a MobileNetV2-based
transfer learning approach on a multi-class satellite dataset. This work not only validates the advantages
of transfer learning in scenarios with limited annotated data but also provides practical insights into
model selection for urban satellite image classification.
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3. Methodology
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Fig 1 Workflow of the Proposed Satellite Image Classification Approach

3.1 Dataset and Preprocessing

Workflow diagram illustrating the preprocessing steps, model architectures (Custom CNN and
MobileNetV2 Transfer Learning), and evaluation metrics used in this work is depicted in Fig 1.

There are 4785 images in the dataset used in this work (3,801 for training, 956 for validation, and 28 for
testing), satellite images categorized into four distinct classes: cultivated area, green area, desert region
and water bodies. These categories were selected to represent diverse urban and residential structures,
thereby enabling the development of a robust classification model.

To ensure consistency and to enhance training quality, all images were resized to a fixed resolution of
224 x 224 x 3. The values of the pixels were adjusted to fall between 0 and 1 by using:
X — Xmin

X =—"" (eq 3.1.1)

Xmax — Xmin

Where Xpa0 Xmin Stand for the maximum and minimum pixel values respectively, where x is the
original pixel intensity and x’ is the normalized value. Normalization ensures faster convergence during
training and prevents issues caused by varying intensity scales.

Volume 19 Issue 1 2026 | Page No: 114



AHURI Final Report Journal | ISSN: 1834-7223 | Impact Factor: 5.7

3.2 Custom CNN Architecture

A Custom Convolutional Neural Network (CNN) created especially to categorize satellite photos into
four: cultivated_area, green_area, desert_region, and water_bodies is one of the methods used in the
proposed work. In order to extract textual and geographical information from the input images, CNN
starts with convolutional layers. The mathematical expression for the convolution operation is as
follows.

fG, ) =yM1 ::_; I1(i +m.j+n).K(m,n) (eq3.2.1)

Where [ denote the input image, K represents the convolution kernel and f (i, j) is the resulting feature
map. To reduce dimensionality while retaining important information, max pooling is applied, defined as

P)) = Gy € R+ +1) (eq3.2.2)

Where the pooling region is denoted by R. After being extracted, the features are flattened and run
through layers that are fully connected. The dense layer's outputs are calculated as

n
zj=0 (z wijx; + bj> (eq 3.2.3)
i=1

Where o is the activation function, x; are the input features, Wi and b]- stand for the learnable weights
and biases and. Finally, the class probabilities for the four categories are produced via a softmax layer:

, zj
P(y=j/x)= ﬁ C=4. (eq3.2.4)

Algorithm 1: Custom CNN for Satellite Image Classification

Input: Satellite image dataset D with 4 classes (cultivated_area, green_area, desert_region,
water_bodies)

Output: Trained CNN model and predicted labels
1: Load image dataset paths and labels

2: Resize all images to 224 x 224

3: Normalize pixel values to range [0, 1]

4: One-hot encode class labels

5: Split dataset into Train, Validation, and Test sets
6: Define CNN architecture:

7: Conv2D -> ReLU - MaxPooling (x3)
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8: Flatten - Dense - Dropout = Dense (Softmax with 4 outputs)
9: Compile model with:

10: Loss = categorical cross-entropy

11: Optimizer = Adam(learning_rate = 0.001)

12: Metric = accuracy

13: For each epoch in num_epochs do

14: For each batch in Train set do

15: Forward pass - compute predictions

16: Compute loss

17: Backpropagate and update weights

18: end for

19: Evaluate on Validation set

20: If validation loss does not improve for patience rounds then
21: Stop training early

22: end if

23: end for

24: Evaluate final model on Test set - compute Accuracy, Precision, Recall, F1-score

25: Save trained CNN model

3.3 MobileNetV2 Transfer Learning

The second approach utilizes MobileNetV2 through transfer learning to improve classification
performance. The foundation for feature extraction is MobileNetV2, which was first trained on the
extensive ImageNet dataset. Its pretrained convolutional base efficiently captures high-level spatial
representations.

The model is modified for the four satellite image categories by adding a specific classification head. To
further enhance performance, selective fine-tuning of deeper convolution layers is carried out, enabling
the model to better capture domain specific features. Gradient descent is used to update the model
parameters during training.
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D) = 9O _y 7,L(6) (eq 3.3.1)

Where L(8) is the loss function, n is the learning rate and ¢ stand for the model parameters. The
probability distribution for the four classes is produced by the final classification layer using the softmax
activation function.

Algorithm 2: MobileNetV2 with Transfer Learning

Input: Satellite image dataset D with 4 classes (cultivated area, green_area, desert_region,
water_bodies)

Output: Fine-tuned MobileNetV2 model and predicted labels

1: Load image dataset paths and labels

2: Resize all images to 224 x 224

3: Normalize pixel values to range [-1, 1]

4: One-hot encode class labels

5: Split dataset into Train, Validation, and Test sets

6: Load pretrained MobileNetV2 (exclude top classification layers)
7: Freeze all base layers

8: Add custom classification head:

9: GlobalAveragePooling2D - Dense - Dropout - Dense (Softmax with 4 outputs)
10: Compile model with:

11: Loss = categorical cross-entropy

12: Optimizer = Adam(learning_rate = 0.0001)

13: Metric = accuracy

14: Train model on Train set for initial epochs with frozen layers
15: Unfreeze last N layers of MobileNetV2

16: Fine-tune model with lower learning rate

17: For each epoch in num_epochs do

18: For each batch in Train set do

19: Forward pass - compute predictions
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20: Compute loss

21: Backpropagate and update weights
22: end for

23: Evaluate on Validation set

24: If early stopping condition met then

25: Break loop

26: end if

27: end for

28: Evaluate final model on Test set - compute Accuracy, Precision, Recall, F1-score

29: Save trained MobileNetV2 model

3.4 Model Training Configuration

Table 1. Summary of Model Training Configuration

Feature Custom CNN

MobileNetV2 Transfer Learning

Epochs

5 (early stopping used, best model

5 (early stopping used, best model

restored) restored)
Total Parameters  ||11,169,476 2,422,468
[Trainable Parameters 11,169,476 164,484
o iae o
Optimizer |Adam (0.001) |Adam (0.001)
‘Loss Function ”Categorical Crossentropy ”Categorical Crossentropy

‘Noise / Regularization ”Dropout (0.5) to reduce overfitting

”Dropout (0.5) on dense layer

Augmentation zr?zztrlolzr:;p Zoom, Width/Height shift, Same as CNN
Input Image Size 224 x 224 x 3 224 x 224 x3
Batch Size 32 32
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4. Results and Evaluation

This work uses standard classification performance criteria, such as accuracy, loss, precision, recall, and
F1-score, to assess the performance of both the custom CNN and MobileNetV2 transfer learning models.
These measurements were calculated using a test dataset that was not used for either training or
validation.

Confusion Matrix for Custom CNN Model
The confusion matrix was created in order to evaluate the Custom CNN model's performance, as seen in
Fig 2. The model's classification accuracy for each class is shown in detail in the matrix.

As seen in the confusion matrix, the model correctly classified the majority of test samples across all
four classes: cultivated_area, desert_region, green_area, and water_bodies. The desert_region class
achieved perfect classification (1131/1131 correct), while cultivated_area recorded 634 correct
predictions out of 644. The green_area class achieved 1400 correct predictions with 100 misclassified as
water_bodies, and the water_bodies class had 1291 correct predictions with 217 misclassified as
green_area.

Out of the 4,785 test images, the model correctly classified 4,455 and misclassified 330, resulting in a
test accuracy of 93.12%. These results indicate strong overall performance for the custom CNN, though
classes with similar visual patterns, particularly green_area and water_bodies, remain more challenging
to separate accurately.
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Fig 2: Custom CNN Model Confusion Matrix
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Custom CNN Model Results

The self-designed Convolutional Neural Network (CNN) developed for this research achieved a
test accuracy of 93.12% with a categorical cross-entropy loss of 0.2071 for the satellite image
classification task. The categorical cross-entropy (CCE) loss used to evaluate multi-class classification is
given by:

c
Les = ) ilog@)  (eq 1)
i=1

Where y; is the true class label (one-hot encoded), ¥, is the predicted probability for class i and Cis the
number of classes (in this case, C= 4). The difference between the actual and anticipated class
distributions is measured by this loss.

These results demonstrate that the model CNN effectively learned spatial and texture features, showing
strong generalization capability across the four classes: cultivated_area, green_area, desert_region, and
water_bodies.

Class-wise metrics is presented in Table 2 indicating strong performance for green_area and
water_bodies. The desert_region recorded slightly lower precision, which may be attributed to its visual

similarity with cultivated_area.

Table 2. Custom CNN model performance

Class HPrecision ”Recall HFl-Score |
cultivated_area 0.89 096 lo.92
green_area 0.96 1.00 [0.95

desert_region 0.87 0.93 ||0.90

water_bodies 0.93 0.86 |(|0.89

With an average accuracy of 93.12% overall, the CNN demonstrated dependable classification in the
majority of categories.

Confusion Matrix for MobileNetV2 Model

Fig 3 shows the confusion matrix for the MobileNetV2 model. A more comprehensive overview of the
model's classification results for the four categories of cultivated_area, green_area, desert_region, and
water_bodies is provided by this image.

MobileNetV2 exhibits outstanding classification performance in each of the four classes, according to
the confusion matrix. While the green_area class obtains 99.2% accuracy with only 12 photos incorrectly
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labeled as water, the cultivated_area (644/644) and desert_region (1131/1131) classes are categorized
with perfect accuracy. Likewise, 98.1% accuracy is recorded by the water_bodies class, with 29 cases
incorrectly classified as green_area.

Confusion Matrix - MobileNetv2
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Fig 3: MobileNetV2 Model Confusion Matrix

With 4,744 out of 4,785 test images properly classified and only 41 mistakenly classified, the model's
overall accuracy was 99.14%. The usefulness of transfer learning with MobileNetV2 for satellite image
categorization is demonstrated by this performance, which significantly surpasses that of the custom
CNN with consistent accuracy and high generalization even across visually related classes.

MobileNetV2 model Results
The MobileNetV2 model, fine-tuned through learning on the same dataset, significantly outperformed
the custom CNN. It achieved a test accuracy of 99.14% with a categorical cross-entropy loss of 0.0305.

By leveraging pretrained ImageNet weights, MobileNetV2’s convolutional base provided robust feature
representations, while selective fine-tuning of deeper layers allowed effective adaptation to the satellite
image domain.

The loss function was identical to that of the CNN which was computed using categorical cross-entropy,
while parameter updates followed the gradient descent rule:

0D =9 — 1. VoL(0)  (eq4.2)
Where L(§) is the loss function, n is the learning rate and & stands for the model parameters

The class-wise performance, presented in Table 3, demonstrates near-perfect classification, with
water_bodies achieving precision and recall values of 1.00, while other classes maintained performance
between 0.98-0.99.
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Table 3. MobileNetV2 model performance

Class ”Precision ”Recall HFl—Score
cultivated_area 0.98 0.99 |l0.98
green_area 1.00 0.99 [|0.99
desert_region 0.98 0.98 |l0.98
water_bodies 0.99 0.96 |l0.99

The average F1-Score of 0.96 for MobileNetV2 showed that it was better than the custom CNN. Table 4
displays the comparison of total performance.

Table 4. CNN and MobileNetV2's overall performance comparison

Model Accuracy (%)|[Loss ||Precision (Avg)||Recall (Avg)|[F1-Score (Avg)
Custom CNN {|93.12 0.2071(/0.92 0.93 0.92
MobileNetV2|(99.14 0.0305(/0.96 0.97 0.96

The results confirm that MobileNetV2 provided a 4.25% accuracy improvement over the custom CNN
and reduced the categorical cross-entropy loss by a large margin. The higher precision, recall, and F1-
scores validate that transfer learning with MobileNetV2 yielded more robust and accurate classification
outcomes than the baseline CNN.

4.3 Comparison with Existing Works

A comparative analysis with recent studies is provided in Table 5. The proposed MobileNetV2 model
surpassed most of the existing works in terms of classification accuracy, highlighting its efficiency in
satellite image classification tasks.

Table 5. Comparison of existing work with the proposed work

Study / Model Dataset / Classes Methodology ,(Ao/c;:uracy
(1)
Tumpa & Islam (2024) satellite Imagery Lightweight Parallel CNN + SVM {|94.20
P (Binary/Multiclass) g & )
K et al. (2023) Remote Sensing Dataset Ensemble ML Classifiers 95.00
(confidence-based)
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Study / Model Dataset / Classes Methodology ?yc;:uracy
(1)
. . L . .
Hu et al. (2015) ngh.Resolutlon Remote Transffer earning with 96.00
Sensing Imagery Pretrained CNNs
B
Audebert et al. (2017) VHR. Urban Images (RGB + Multimodal Deep CNNs 97.10
Multispectral)
Zhang et al. (2019) Aerial Images Patch-k?ased CNN - for  Road 95.50
Extraction
Proposed Custom CNN CNN with 3 Conv-Pool Blocks,
12
(This Work) 4785 Images (4 Classes) Dense, Dropout 3
Proposed _MoblleNetVZ Same Dataset (4 Classes) Pretrained MobileNetV2 + Fine- 99.14
Transfer Learning tuned Dense layers

The proposed MobileNetV2 model’s accuracy of 99.14% is higher than those reported in related studies,
indicating its capability to generalize well across diverse urban satellite scenes.

5. Conclusion and Future Work

This study demonstrates the effectiveness of pretrained convolutional neural network architectures
particularly MobileNetV2, for satellite image categorization tasks. Even with a tiny dataset and few
training epochs, the model was able to achieve great generalization and superior accuracy by utilizing
transfer learning and fine-tuning techniques. The findings demonstrate how lightweight deep learning
models may preserve computational efficiency while extracting significant spatial and semantic
characteristics from high-resolution satellite data.

Other cutting-edge designs like EfficientNet, ResNet variations (such ResNet-50 and ResNet-152), and
attention-based models like Vision Transformers (ViTs) will be included into future work to expand this
strategy. Particularly for bigger and more varied datasets, these models may be able to significantly
increase classification accuracy and scalability. To improve performance in situations with little data,
integrating strategies like multi-task learning frameworks, semi-supervised learning, and robust data
augmentation pipelines will also be investigated. These developments may open the door to the
creation of scalable and extremely precise satellite image classification systems that have practical uses
in environmental monitoring, urban planning, and disaster relief.
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