
Deep Learning-Based Satellite Image 
Classification Using CNN and 
MobileNetV2 Transfer Learning 

Divya.B 1 , Subashini T.S 2, Bharathidasan.B3 

1Research Scholar, Department of Computer Science and Engineering, Annamalai University,  

2Professor of Computer Science and Engineering, Annamalai University,  

3Associate professor, Department of ECE, Sree rama engineering college, Tirupati.  

ABSTRACT 

Classification of satellite images is a crucial task for remote sensing applications including land cover 

mapping, urban planning, and environmental monitoring. This work introduces a robust deep learning 

architecture for classifying high-resolution satellite images into four classes: cultivated area, forest area, 

desert region, and water bodies. The method uses both a native Convolutional Neural Network (CNN) 

and transfer fine-tuned MobileNetV2 model learning. Models were tested with accuracy, precision, 

recall and F1-score. The results demonstrate that MobileNetV2 achieved a test accuracy of 99.14%, 

which outperformed the custom CNN, which had attained 93.12%, thus confirming the efficacy of 

transfer learning in satellite image classification. 

KEYWORD: Satellite Image Classification, Convolutional Neural Network (CNN), MobileNetV2, Transfer 

Learning, Remote Sensing, Deep Learning, Land Cover Classification, Image Recognition, Accuracy 

Assessment, Performance Measures. 

1. Introduction 
Remote sensing has witnessed significant growth in the past decade, driven by significant technological 

advancements in satellite imagery and image processing algorithms. Conventional ways to classify 

Satellite images typically use traditional hand-crafted feature extraction techniques and heuristic laws, 

which are slow and insensitive to subtle spatial patterns. Contrarily, deep learning-based the techniques, 

particularly the convolutional neural network (CNN)-based techniques, have seen visibility due to their 

ability to automatically record complicated spatial relationships within large-scale satellite data sets. The 

present study examines the efficiency of deep learning approaches by comparing a typical CNN 

architecture with the use of a transfer learning strategy with MobileNetV2 with a focus on cultivated 

land, green area, desert, and water to determine how they fare in actual world conditions.  

Convolutional Neural Networks (CNN) has demonstrated remarkable performance in picture 

classification tasks, mostly due to its capacity for hierarchical feature learning [26][28]. CNNs can 

AHURI Final Report Journal | ISSN: 1834-7223 | Impact Factor: 5.7

Volume 19 Issue 1 2026 | Page No: 111



identify local patterns like edges, textures, and forms in early levels by processing raw pixel input 

through a series of convolutional layers. Deeper layers then synthesize these features into more abstract 

representations for precise class separation. In satellite images, where spatial context such as urban 

layouts, vegetation distribution, and water bodies is crucial to categorization accuracy, this hierarchical 

structure is very helpful. CNNs automatically train discriminative features, which makes them ideal for 

high-dimensional remote sensing data, in contrast to conventional techniques that call for manually 

created features. 

This work uses MobileNetV2, a lightweight deep learning model built for resource-constrained contexts, 

to further improve speed and efficiency. MobileNetV2 significantly reduces processing overhead while 

maintaining competitive accuracy with the use of depthwise separable convolutions and inverted 

residual blocks. The model uses pretrained ImageNet weights within a transfer learning framework to 

effectively adapt to satellite imagery. This approach not only minimizes overfitting, a common issue with 

short datasets, but it also accelerates convergence, making it a feasible substitute for classifying urban 

satellite images in situations where data availability may be limited.  

This work compares a custom CNN with MobileNetV2-based transfer learning to investigate the trade-

offs between model complexity, computational efficiency, and classification accuracy in the context of 

urban satellite data. Based on their unique constraints be they computational resources, dataset size, or 

required precision the findings are intended to help academics and practitioners choose the best deep 

learning approaches. In the end, our work supports the larger endeavor to optimize automated satellite 

image processing for applications related to environmental monitoring, urban planning, and disaster 

management.  

2. Related Work 
Deep learning has revolutionized satellite image classification by making it possible to automatically 

extract high-level spatial and semantic characteristics. This contrasts with conventional machine learning 

methods that depend on feature engineering by hand. Initial work by Tumpa and Islam [1] showed how 

lightweight CNN architectures in conjunction with SVM classifiers could increase classification accuracy 

for satellite data. By combining predictions from several machine learning models, ensemble 

approaches like the confidence-based model fusion put out by K et al. [2] have improved resilience. 

These developments highlight the move toward data-driven methods that can manage the complexity 

and unpredictability present in data from remote sensing. 

A major advancement in effective deep learning for remote sensing was made possible by MobileNetV2 

[3], a low-power architecture that reduces computation without sacrificing efficiency by using depthwise 

separable convolutions and inverted residual blocks. The approach has proven very useful in situations 

requiring few resources, such as the processing of satellite images. Transfer learning, which adapts 

models pretrained on large datasets like ImageNet for remote sensing applications, has further 

improved efficiency. Studies by Hu et al. [4] and Marmanis et al. [5] demonstrated that fine-tuning 

pretrained CNNs significantly enhances high-resolution remote sensing scene classification, even with 

minimal labeled data.  
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Deep learning approaches have been very beneficial for urban land use classification, with 
researchers investigating different architectures and fusion methodologies. Transfer learning and deep 
CNNs were used by Xu et al. [8] to extract buildings from extremely high-resolution images. However, 
Audebert et al. [9] used multimodal deep networks to combine RGB and multispectral inputs, improving 
classification accuracy. The AID dataset [14] and other benchmark datasets have been essential in 
standardizing assessments for aerial scene classification. Deep learning has improved object-level 
classification in addition to scene-level analysis. In order to demonstrate how deep learning may be 
applied to remote sensing applications, Li et al. [10] created models for the detection and counting of oil 
palm trees, and Zhang et al. [16] presented a CNN-based technique for autonomous road extraction.  

In order to further improve classification performance, recent research has emphasized the 
need of merging multimodal data with sophisticated learning approaches. In order to take advantage of 
both spatial and temporal information, Roy et al. [22] and Qi and Zhang [15] combined CNNs with LSTMs 
and transfer learning. In the meantime, Cheng et al. [12],[27] improved scene classification accuracy by 
using metric learning to improve discriminative feature representations. Traditional deep learning 
models like ResNet [18], VGGNet [19], and AlexNet [20] remain fundamental, influencing more effective 
designs like MobileNetV2 and specific remote sensing adaptations. Comprehensive assessments by Zhu 
et al. [7], Liu et al. [23], and Zhang et al. [24] show the ground-breaking impacts of deep learning in Earth 
observation, encompassing tasks from land cover categorization to object recognition. Additionally, 
Zhao and Du [25] established deep spectral–spatial feature extraction approaches for hyperspectral 
data, enabling finer-grained classification. 

This work conducts a direct comparison between a custom CNN and a MobileNetV2-based 
transfer learning approach on a multi-class satellite dataset. This work not only validates the advantages 
of transfer learning in scenarios with limited annotated data but also provides practical insights into 
model selection for urban satellite image classification. 
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3. Methodology 

 

Fig 1 Workflow of the Proposed Satellite Image Classification Approach 

3.1 Dataset and Preprocessing 
Workflow diagram illustrating the preprocessing steps, model architectures (Custom CNN and 
MobileNetV2 Transfer Learning), and evaluation metrics used in this work is depicted in Fig 1.  
 
There are 4785 images in the dataset used in this work (3,801 for training, 956 for validation, and 28 for 
testing), satellite images categorized into four distinct classes: cultivated area, green area, desert region 
and water bodies. These categories were selected to represent diverse urban and residential structures, 
thereby enabling the development of a robust classification model.  
 
To ensure consistency and to enhance training quality, all images were resized to a fixed resolution of 
224 x 224 x 3. The values of the pixels were adjusted to fall between 0 and 1 by using: 
 

� ʹ =
� − ����

���� − ����
         (�� 3.1.1) 

Where ����, ���� stand for the maximum and minimum pixel values respectively, where x is the 
original pixel intensity and xʹ is the normalized value. Normalization ensures faster convergence during 
training and prevents issues caused by varying intensity scales. 
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3.2 Custom CNN Architecture 
A Custom Convolutional Neural Network (CNN) created especially to categorize satellite photos into 

four: cultivated_area, green_area, desert_region, and water_bodies is one of the methods used in the 

proposed work. In order to extract textual and geographical information from the input images, CNN 

starts with convolutional layers. The mathematical expression for the convolution operation is as 

follows. 

�(�, �) = ∑ � �(� + �. � + �). �(�, �)
���

���
���
���                                      (eq 3.2.1) 

Where I denote the input image, K represents the convolution kernel and �(�, �) is the resulting feature 

map. To reduce dimensionality while retaining important information, max pooling is applied, defined as 

�(�, �) =
���

(�, �) ∈ ��(� + �, � + �)                                               (eq 3.2.2) 

Where the pooling region is denoted by R. After being extracted, the features are flattened and run 

through layers that are fully connected. The dense layer's outputs are calculated as 

�� = � �� ��,�

�

���

�� + ���                     (�� 3.2.3) 

Where σ is the activation function, x� are the input features, w�,� and b� stand for the learnable weights 

and biases and. Finally, the class probabilities for the four categories are produced via a softmax layer: 

�(� = � �)⁄ =
���

∑ ����
���

, C=4.       (eq 3.2.4) 

Algorithm 1: Custom CNN for Satellite Image Classification 

Input: Satellite image dataset D with 4 classes (cultivated_area, green_area, desert_region, 

water_bodies) 

Output: Trained CNN model and predicted labels 

1: Load image dataset paths and labels 

2: Resize all images to 224 × 224 

3: Normalize pixel values to range [0, 1] 

4: One-hot encode class labels 

5: Split dataset into Train, Validation, and Test sets 

6: Define CNN architecture: 

7:  Conv2D → ReLU → MaxPooling (×3) 
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8:  Flatten → Dense → Dropout → Dense (So�max with 4 outputs) 

9: Compile model with: 

10:  Loss = categorical cross-entropy 

11:  Optimizer = Adam(learning_rate = 0.001) 

12:  Metric = accuracy 

13: For each epoch in num_epochs do 

14:  For each batch in Train set do 

15:    Forward pass → compute predic�ons 

16:    Compute loss 

17:    Backpropagate and update weights 

18:  end for 

19:  Evaluate on Validation set 

20:  If validation loss does not improve for patience rounds then 

21:    Stop training early 

22:  end if 

23: end for 

24: Evaluate final model on Test set → compute Accuracy, Precision, Recall, F1-score 

25: Save trained CNN model 

3.3 MobileNetV2 Transfer Learning 
The second approach utilizes MobileNetV2 through transfer learning to improve classification 

performance. The foundation for feature extraction is MobileNetV2, which was first trained on the 

extensive ImageNet dataset. Its pretrained convolutional base efficiently captures high-level spatial 

representations.  

The model is modified for the four satellite image categories by adding a specific classification head. To 

further enhance performance, selective fine-tuning of deeper convolution layers is carried out, enabling 

the model to better capture domain specific features. Gradient descent is used to update the model 

parameters during training. 
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�(���) = �(�) − �. ���(�)              (�� 3.3.1) 

Where L(θ) is the loss function, η is the learning rate and θ stand for the model parameters. The 

probability distribution for the four classes is produced by the final classification layer using the softmax 

activation function.  

Algorithm 2: MobileNetV2 with Transfer Learning 

Input: Satellite image dataset D with 4 classes (cultivated_area, green_area, desert_region, 

water_bodies) 

Output: Fine-tuned MobileNetV2 model and predicted labels 

1: Load image dataset paths and labels 

2: Resize all images to 224 × 224 

3: Normalize pixel values to range [-1, 1] 

4: One-hot encode class labels 

5: Split dataset into Train, Validation, and Test sets 

6: Load pretrained MobileNetV2 (exclude top classification layers) 

7: Freeze all base layers 

8: Add custom classification head: 

9:  GlobalAveragePooling2D → Dense → Dropout → Dense (So�max with 4 outputs) 

10: Compile model with: 

11:  Loss = categorical cross-entropy 

12:  Optimizer = Adam(learning_rate = 0.0001) 

13:  Metric = accuracy 

14: Train model on Train set for initial epochs with frozen layers 

15: Unfreeze last N layers of MobileNetV2 

16: Fine-tune model with lower learning rate 

17: For each epoch in num_epochs do 

18:  For each batch in Train set do 

19:    Forward pass → compute predictions 
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20:    Compute loss 

21:    Backpropagate and update weights 

22:  end for 

23:  Evaluate on Validation set 

24:  If early stopping condition met then 

25:    Break loop 

26:  end if 

27: end for 

28: Evaluate final model on Test set → compute Accuracy, Precision, Recall, F1-score 

29: Save trained MobileNetV2 model 

3.4 Model Training Configuration 

Table 1. Summary of Model Training Configuration 

Feature Custom CNN MobileNetV2 Transfer Learning 

Epochs 
5 (early stopping used, best model 
restored) 

5 (early stopping used, best model 
restored) 

Total Parameters 11,169,476 2,422,468 

Trainable Parameters 11,169,476 164,484 

Non-trainable 
Parameters 

0 2,257,984 

Optimizer Adam (0.001) Adam (0.001) 

Loss Function Categorical Crossentropy Categorical Crossentropy 

Noise / Regularization Dropout (0.5) to reduce overfitting Dropout (0.5) on dense layer 

Augmentation 
Rotation, Zoom, Width/Height shift, 
Shear, Flip 

Same as CNN 

Input Image Size 224 × 224 × 3 224 × 224 × 3 

Batch Size 32 32 
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4. Results and Evaluation 
This work uses standard classification performance criteria, such as accuracy, loss, precision, recall, and 

F1-score, to assess the performance of both the custom CNN and MobileNetV2 transfer learning models. 

These measurements were calculated using a test dataset that was not used for either training or 

validation. 

Confusion Matrix for Custom CNN Model 
The confusion matrix was created in order to evaluate the Custom CNN model's performance, as seen in 

Fig 2. The model's classification accuracy for each class is shown in detail in the matrix. 

As seen in the confusion matrix, the model correctly classified the majority of test samples across all 

four classes: cultivated_area, desert_region, green_area, and water_bodies. The desert_region class 

achieved perfect classification (1131/1131 correct), while cultivated_area recorded 634 correct 

predictions out of 644. The green_area class achieved 1400 correct predictions with 100 misclassified as 

water_bodies, and the water_bodies class had 1291 correct predictions with 217 misclassified as 

green_area.  

Out of the 4,785 test images, the model correctly classified 4,455 and misclassified 330, resulting in a 

test accuracy of 93.12%. These results indicate strong overall performance for the custom CNN, though 

classes with similar visual patterns, particularly green_area and water_bodies, remain more challenging 

to separate accurately. 

 

Fig 2: Custom CNN Model Confusion Matrix 
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Custom CNN Model Results 

The self-designed Convolutional Neural Network (CNN) developed for this research achieved a 
test accuracy of 93.12% with a categorical cross-entropy loss of 0.2071 for the satellite image 
classification task. The categorical cross-entropy (CCE) loss used to evaluate multi-class classification is 
given by: 

���� = � �����(��� )

�

���

           (�� 4.1) 

Where �� is the true class label (one-hot encoded), ���   is the predicted probability for class i and C is the 
number of classes (in this case, C= 4). The difference between the actual and anticipated class 
distributions is measured by this loss.  

These results demonstrate that the model CNN effectively learned spatial and texture features, showing 
strong generalization capability across the four classes: cultivated_area, green_area, desert_region, and 
water_bodies. 

Class-wise metrics is presented in Table 2 indicating strong performance for green_area and 
water_bodies. The desert_region recorded slightly lower precision, which may be attributed to its visual 
similarity with cultivated_area. 

Table 2. Custom CNN model performance 

Class Precision Recall F1-Score 

cultivated_area 
0.89 0.96 0.92 

green_area 
0.96 1.00 0.95 

desert_region 
0.87 0.93 0.90 

water_bodies 
0.93 0.86 0.89 

With an average accuracy of 93.12% overall, the CNN demonstrated dependable classification in the 
majority of categories. 

Confusion Matrix for MobileNetV2 Model 
Fig 3 shows the confusion matrix for the MobileNetV2 model. A more comprehensive overview of the 

model's classification results for the four categories of cultivated_area, green_area, desert_region, and 

water_bodies is provided by this image.  

MobileNetV2 exhibits outstanding classification performance in each of the four classes, according to 

the confusion matrix. While the green_area class obtains 99.2% accuracy with only 12 photos incorrectly 
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labeled as water, the cultivated_area (644/644) and desert_region (1131/1131) classes are categorized 

with perfect accuracy. Likewise, 98.1% accuracy is recorded by the water_bodies class, with 29 cases 

incorrectly classified as green_area.  

 

Fig 3: MobileNetV2 Model Confusion Matrix 

With 4,744 out of 4,785 test images properly classified and only 41 mistakenly classified, the model's 
overall accuracy was 99.14%. The usefulness of transfer learning with MobileNetV2 for satellite image 
categorization is demonstrated by this performance, which significantly surpasses that of the custom 
CNN with consistent accuracy and high generalization even across visually related classes. 

MobileNetV2 model Results 
The MobileNetV2 model, fine-tuned through learning on the same dataset, significantly outperformed 

the custom CNN. It achieved a test accuracy of 99.14% with a categorical cross-entropy loss of 0.0305.  

By leveraging pretrained ImageNet weights, MobileNetV2’s convolutional base provided robust feature 

representations, while selective fine-tuning of deeper layers allowed effective adaptation to the satellite 

image domain. 

The loss function was identical to that of the CNN which was computed using categorical cross-entropy, 

while parameter updates followed the gradient descent rule: 

�(���) = �(�) − η. ∇�L(θ)       (eq4.2) 

Where L(θ) is the loss function, η is the learning rate and θ stands for the model parameters 

The class-wise performance, presented in Table 3, demonstrates near-perfect classification, with 

water_bodies achieving precision and recall values of 1.00, while other classes maintained performance 

between 0.98–0.99. 
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Table 3. MobileNetV2 model performance 

Class Precision Recall F1-Score 

cultivated_area 
0.98 0.99 0.98 

green_area 
1.00 0.99 0.99 

desert_region 
0.98 0.98 0.98 

water_bodies 
0.99 0.96 0.99 

The average F1-Score of 0.96 for MobileNetV2 showed that it was better than the custom CNN. Table 4 
displays the comparison of total performance. 

Table 4. CNN and MobileNetV2's overall performance comparison 

Model Accuracy (%) Loss Precision (Avg) Recall (Avg) F1-Score (Avg) 

Custom CNN 93.12 0.2071 0.92 0.93 0.92 

MobileNetV2 99.14 0.0305 0.96 0.97 0.96 

The results confirm that MobileNetV2 provided a 4.25% accuracy improvement over the custom CNN 
and reduced the categorical cross-entropy loss by a large margin. The higher precision, recall, and F1-
scores validate that transfer learning with MobileNetV2 yielded more robust and accurate classification 
outcomes than the baseline CNN. 

4.3 Comparison with Existing Works 

A comparative analysis with recent studies is provided in Table 5. The proposed MobileNetV2 model 
surpassed most of the existing works in terms of classification accuracy, highlighting its efficiency in 
satellite image classification tasks. 

Table 5. Comparison of existing work with the proposed work 

Study / Model Dataset / Classes Methodology 
Accuracy 
(%) 

Tumpa & Islam (2024) 
Satellite Imagery 
(Binary/Multiclass) 

Lightweight Parallel CNN + SVM 94.20 

K et al. (2023) Remote Sensing Dataset 
Ensemble ML Classifiers 
(confidence-based) 

95.00 
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Study / Model Dataset / Classes Methodology 
Accuracy 
(%) 

Hu et al. (2015) 
High-Resolution Remote 
Sensing Imagery 

Transfer Learning with 
Pretrained CNNs 

96.00 

Audebert et al. (2017) 
VHR Urban Images (RGB + 
Multispectral) 

Multimodal Deep CNNs 97.10 

Zhang et al. (2019) Aerial Images 
Patch-based CNN for Road 
Extraction 

95.50 

Proposed Custom CNN 
(This Work) 

4785 Images (4 Classes) 
CNN with 3 Conv-Pool Blocks, 
Dense, Dropout 

93.12 

Proposed MobileNetV2 
Transfer Learning 

Same Dataset (4 Classes) 
Pretrained MobileNetV2 + Fine-
tuned Dense layers 

99.14 

The proposed MobileNetV2 model’s accuracy of 99.14% is higher than those reported in related studies, 
indicating its capability to generalize well across diverse urban satellite scenes.  

5. Conclusion and Future Work 

This study demonstrates the effectiveness of pretrained convolutional neural network architectures 
particularly MobileNetV2, for satellite image categorization tasks. Even with a tiny dataset and few 
training epochs, the model was able to achieve great generalization and superior accuracy by utilizing 
transfer learning and fine-tuning techniques. The findings demonstrate how lightweight deep learning 
models may preserve computational efficiency while extracting significant spatial and semantic 
characteristics from high-resolution satellite data. 

Other cutting-edge designs like EfficientNet, ResNet variations (such ResNet-50 and ResNet-152), and 
attention-based models like Vision Transformers (ViTs) will be included into future work to expand this 
strategy. Particularly for bigger and more varied datasets, these models may be able to significantly 
increase classification accuracy and scalability. To improve performance in situations with little data, 
integrating strategies like multi-task learning frameworks, semi-supervised learning, and robust data 
augmentation pipelines will also be investigated. These developments may open the door to the 
creation of scalable and extremely precise satellite image classification systems that have practical uses 
in environmental monitoring, urban planning, and disaster relief. 
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